Upcoming workshop on the future of Earth-observing satellites

Researchers and partners from industry, government, and academia are invited to a free workshop on May 24th 2019 to discuss the future of satellite-based remote sensing of Earth’s water resources and ocean dynamics. The workshop will be held at the Sydney Bureau of Meteorology and streamed live to the web.

In the coming decade, new satellite missions will map Earth’s surface water and sea level (ocean topography) at a resolution that has not been possible before. These observations will provide critical information that is needed to assess water resources on land, track regional sea level changes, monitor coastal processes, and observe small-scale ocean currents and eddies. The first of these satellites, the NASA/CNES Surface Water Ocean Topography (SWOT) mission, is scheduled for launch in late 2021.

The workshop on future high-resolution satellite altimetry is organized by the Australian Bureau of Meteorology and the Australian Surface Water Ocean Topography (AUSWOT) working group, a consortium of researchers and stakeholders from industry, government, and academia that aims to develop Australia’s capability in the field of surface water and ocean topography and address key issues relevant to the Asia-Pacific region.

All researchers and partners are invited to participate in this free workshop. Click here to find out more information and to register.

Advertisement

M4PE Seminar – Fiona Johnson: Droughts, floods and statistics

Title:
Droughts and flooding rains – statistical methods for hydrological extremes

Date/Time:
Wednesday the 17th of April 4pm-5pm

Location:
UNSW School of Mathematics and Statistics, Red Centre room 2060 (level 2)

Talk summary
Hydrological extremes by their very nature are rare events and require careful use of statistical methods to ensure robust and reliable predictions. This presentation focuses on two case studies of application of statistical methods in hydrological engineering. The first example is the use of discrete wavelet transforms to better understand the drivers of multi year droughts in the Murray Darling Basin and how the frequency and severity of these events will change in the future. The second case study focuses on the other side of the metaphorical hydrologic coin – flooding rains and application of extreme value statistics to quantify the risk of extreme rainfall events historically and into the future.

Speaker Bio:
Fiona Johnson is a Senior Lecturer and Scientia Fellow in the Faculty of Engineering, School of Civil and Environmental Engineering. She is interested in changes to flooding, droughts and extreme events due to climate change and her research focuses on how best to use climate models in engineering design, with a particular interest in statistical methods that can answer these questions.  Through her research, Fiona aims to provide sustainable solutions to the water engineering problems faced by communities, particularly those in developing countries.