Dynamics of a marine heatwave: what happens below the surface?

Extreme temperatures in the ocean are getting more frequent and intense, impacting marine ecosystems and industries. However the subsurface signature of these marine heatwaves is still largely unknown, in particular in shallow coastal areas where most of the ecological damages occur.

In addition to sustained observations, the Australian Integrated Marine Observing System (IMOS) now aims at sampling the coastal ocean during marine heatwaves with real-time deployments of ocean gliders. Gliders are automated underwater vehicles which measure the water properties between the ocean floor and the surface for a few weeks. Two of such deployments were successfully finalised, sampling the eastern shelf of Tasmania during the latest marine heatwave event in the Tasman Sea in summer / spring 2019.

The project aims at understanding the extent and characteristics of marine heatwaves using glider measurements and complementary satellite and moored observations. Key questions include the temporal evolution, from the onset to the decline of the extreme event, and the influence of the local oceanography such as currents and wind-driven processes on the persistence and variability of these anomalous temperatures. The student will use programming language to analyse this unique dataset and compute the heat budget equations.

Basic knowledge of oceanography and experience in Matlab or Python are required. The project will be based at UNSW Sydney, co-supervised by Amandine Schaeffer (UNSW), Jessica Benthuysen (AIMS) and Neil Holbrook (UTAS).

Contact: a.schaeffer@unsw.edu.au

Scientists and schools join forces to understand urban climate

A new citizen science project will place meteorological and air quality sensors in Sydney schools to gather valuable research data and increase awareness of the changing local urban environment.

Screen Shot 2018-12-08 at 12.31.42 pm.png

The Schools Weather and Air Quality (SWAQ) project is the brain-child of Melissa Hart, Angela Maharaj and Giovanni Di Virgilio of UNSW’s Climate Change Research Centre. With funding from the Department of Industry, Innovation and Science, SWAQ will improve urban weather and air quality measurements around Sydney by placing meteorological and air quality sensors in its schools. Students will collect and analyse research quality data for use in science and geography curriculum-aligned classroom activities. The data will also be freely available online to the public and researchers via this website, enabling everyone to visualize the data and the current weather and air quality of each school’s location.

SWAQ investigator Angela Maharaj will discuss the SWAQ project and citizen science at a public lecture at the Bureau of Meteorology in Sydney on December 14 2018 as part of the upcoming Frontiers in Fluid Dynamics workshop. All are welcome to attend this event.

Speaker: Dr Angela Maharaj (UNSW).

Title: Schools weather and air quality (SWAQ): where citizen science meets urban climate research.

When: 6:00 pm, 14 December 2018.

Where: Bureau of Meteorology, 16/300 Elizabeth St, Sydney




Worth waiting for: ARC grant success for Jan Zika and Matthew England

Dr Jan Zika (UNSW Mathematics & Statistics) and Prof Matthew England (UNSW Climate Change Research Centre) were awarded $1M in funding in today’s much-awaited announcement by the Australian Research Council. Their Discovery Projects will examine the role of ocean heat content in sea level change and rapid warming near in Antarctica.


Jan’s Discovery Project, “Ocean heat content change and its impact on sea level”, aims to improve projections of possible sea level changes. Poor understanding of the way in which heat is absorbed at the sea surface and distributed by ocean circulation is a leading source of uncertainty in projections of global surface temperature and regional sea level rise by the end of this century. The project, which is a collaboration with Professor John Church (UNSW), Professor Jonathan Gregory (University of Reading, UK), and Dr Xuebin Zhang (CSIRO), aims to transform our ability to predict how ocean temperature and sea level will change in the future.

Matt’s Discovery Project, “Risks of rapid ocean warming at the Antarctic continental margin”, aims to comprehensively understand the interconnected processes by which oceanic heat is circulated towards Antarctica. The risk of rapid ocean warming at the Antarctic margin is profound, with change already detected via deep ocean warming, land-ice melt, and ice shelf collapse. Matt’s project will use high-resolution global and regional ocean/sea-ice models better constrain future rates of ice melt around Antarctica by providing vital knowledge of the ocean processes, dynamics, and feedbacks relating to warm water intrusion onto the Antarctic continental shelf. The project is a collaboration with Dr Andrew Hogg (ANU), Dr Adele Morrison (ANU), Dr Paul Spence (UNSW) and Dr Stephen Griffies (Princeton University, USA).

Full details of today’s ARC grants announcement can be found here.

Upcoming public lecture by Princeton climate scientist Dr Stephen Griffies

Climate scientist and oceanographer Dr Stephen Griffies will deliver a public lecture at the AMSI Summer School at UNSW Sydney on Wednesday 30 January 2019.

Stephen Griffies has been at Princeton University and NOAA’s Geophysical Fluid Dynamics Laboratory since 1993. His research spans a broad spectrum of fundamental and applied areas of ocean and climate science, including numerical modelling, mesoscale and submesoscale dynamics, turbulence parameterizations, Southern Ocean dynamics, Atlantic predictability and variability, sea level science, Lagrangian and watermass analyses, and foundations of ocean fluid mechanics. He is the 2014 recipient of the EGU Fridtjof Nansen medal for oceanographic excellence and is a fellow of the American Geophysical Union.

A Math/Physics View of Ocean Circulation


Abstract: Ocean circulation acts like bloodlines for the planet, moving heat, oxygen, carbon, and nutrients around the world. Furthermore, ocean circulation moderates climate: think of the different climates between a maritime region (Sydney) and a mid-continent region (Alice Springs). Ocean circulation thus affects life both on land and within the ocean. When the ocean circulation slows or speeds, the climate system is affected. Ocean and climate scientists aim to understand the physical mechanisms underlying changes in ocean circulation. What forces cause the changes? How predictable are they? To help answer these questions, oceanographers formulate mathematical equations for the governing physical laws and place the equations on supercomputers for grand simulations. In this talk I will offer a sampling of the research questions confronting ocean scientists who make use of mathematics, physics, and computer simulations. Some of the questions touch upon the most difficult questions facing humanity in the 21st century.

Date: Wednesday 30 January 2019
Time: 7.00pm – approximately 8.30pm (ADST) Light refreshments will be available from 6.00pm
Venue: The Science Theatre, F13, Union Road, The University of New South Wales, Kensington Campus, Sydney
Address: Gate 2, High Street, The University of New South Wales, Kensington
Cost: Free (Register online)


Upcoming seminar by Sarah Perkins-Kirkpatrick on Stats and Heatwaves

Monday November 5th, 4pm
RC-4082, The Red Centre, UNSW 

Heatwaves are changing. What role does statistics have in understanding these changes?

Heatwaves are increasing in their frequency, intensity and duration. Loosely described as prolonged periods of excessive heat, statistical techniques underpin their measurement, understanding their changes, the physical mechanisms behind these changes, the role anthropogenic climate change plays, and estimates of uncertainty (or certainty)  surrounding these factors.  This talk will explore the vital role statistics has behind heatwaves, making our understanding of these high-impact events possible.

Dr Sarah Perkins-Kirkpatrick is an ARC Future Fellow at the Climate Change Research Centre, UNSW Sydney. Her background focuses on measuring heatwaves, what drives them, the role climate change plays and future projections in a warmer world. Sarah’s Future Fellowship is working towards improving the attribution methods of extreme events (such as heatwaves) to human influence, as well as determining whether the health impacts of heatwaves can be attributed to human influence on the climate. Since gaining her PhD in 2010, Sarah has published 60 peer reviewed scientific papers on climate extremes. She co-leads an expert team for the World Meteorological Organisation’s Commission for Climatology, and is a frequent voice in local and international media on all things climate change in heatwaves. Sarah has won numerous awards for her research, and was named one UNSW’s 20 rising stars who will change our world in 2016.

This seminar is part of the ‘Mathematics for Planet Earth’ initiative (mathsforearth.com) and is co-hosted by the Department of Statistic at the School of Mathematics and Statistics at UNSW, Sydney. Light refreshments will follow the seminar.