Worth waiting for: ARC grant success for Jan Zika and Matthew England

Dr Jan Zika (UNSW Mathematics & Statistics) and Prof Matthew England (UNSW Climate Change Research Centre) were awarded $1M in funding in today’s much-awaited announcement by the Australian Research Council. Their Discovery Projects will examine the role of ocean heat content in sea level change and rapid warming near in Antarctica.

jan-matt

Jan’s Discovery Project, “Ocean heat content change and its impact on sea level”, aims to improve projections of possible sea level changes. Poor understanding of the way in which heat is absorbed at the sea surface and distributed by ocean circulation is a leading source of uncertainty in projections of global surface temperature and regional sea level rise by the end of this century. The project, which is a collaboration with Professor John Church (UNSW), Professor Jonathan Gregory (University of Reading, UK), and Dr Xuebin Zhang (CSIRO), aims to transform our ability to predict how ocean temperature and sea level will change in the future.

Matt’s Discovery Project, “Risks of rapid ocean warming at the Antarctic continental margin”, aims to comprehensively understand the interconnected processes by which oceanic heat is circulated towards Antarctica. The risk of rapid ocean warming at the Antarctic margin is profound, with change already detected via deep ocean warming, land-ice melt, and ice shelf collapse. Matt’s project will use high-resolution global and regional ocean/sea-ice models better constrain future rates of ice melt around Antarctica by providing vital knowledge of the ocean processes, dynamics, and feedbacks relating to warm water intrusion onto the Antarctic continental shelf. The project is a collaboration with Dr Andrew Hogg (ANU), Dr Adele Morrison (ANU), Dr Paul Spence (UNSW) and Dr Stephen Griffies (Princeton University, USA).

Full details of today’s ARC grants announcement can be found here.

Advertisement

Upcoming public lecture by Princeton climate scientist Dr Stephen Griffies

Climate scientist and oceanographer Dr Stephen Griffies will deliver a public lecture at the AMSI Summer School at UNSW Sydney on Wednesday 30 January 2019.

Stephen Griffies has been at Princeton University and NOAA’s Geophysical Fluid Dynamics Laboratory since 1993. His research spans a broad spectrum of fundamental and applied areas of ocean and climate science, including numerical modelling, mesoscale and submesoscale dynamics, turbulence parameterizations, Southern Ocean dynamics, Atlantic predictability and variability, sea level science, Lagrangian and watermass analyses, and foundations of ocean fluid mechanics. He is the 2014 recipient of the EGU Fridtjof Nansen medal for oceanographic excellence and is a fellow of the American Geophysical Union.

A Math/Physics View of Ocean Circulation

 

Abstract: Ocean circulation acts like bloodlines for the planet, moving heat, oxygen, carbon, and nutrients around the world. Furthermore, ocean circulation moderates climate: think of the different climates between a maritime region (Sydney) and a mid-continent region (Alice Springs). Ocean circulation thus affects life both on land and within the ocean. When the ocean circulation slows or speeds, the climate system is affected. Ocean and climate scientists aim to understand the physical mechanisms underlying changes in ocean circulation. What forces cause the changes? How predictable are they? To help answer these questions, oceanographers formulate mathematical equations for the governing physical laws and place the equations on supercomputers for grand simulations. In this talk I will offer a sampling of the research questions confronting ocean scientists who make use of mathematics, physics, and computer simulations. Some of the questions touch upon the most difficult questions facing humanity in the 21st century.

Date: Wednesday 30 January 2019
Time: 7.00pm – approximately 8.30pm (ADST) Light refreshments will be available from 6.00pm
Venue: The Science Theatre, F13, Union Road, The University of New South Wales, Kensington Campus, Sydney
Address: Gate 2, High Street, The University of New South Wales, Kensington
Cost: Free (Register online)

 

Sarah Perkins-Kirkpatrick

I’m a climate scientist interested in extreme events. In my research, I study how to better understand the anthropogenic signal behind heatwaves and their impacts. Heatwaves have become my passion – they are such complex events that have such high impacts.

My work on heatwaves has seen me recognised both nationally and internationally. I was short listed as a member of “team extreme” in the 2014 Eureka Prizes, I received a 2013 NSW Young Tall Poppy Award, I’ve worked closely with Australia’s Climate Council, and I have ongoing collaborations with international colleagues who are leaders in my field. I co-ordinated the first interdisciplinary Australian heatwave workshop in 2014, with the second following in 2015.

I developed Scorcher, where members of the general public can track heatwaves at many different sites across Australia. I also take on an active communication role on all things heatwaves, extremes and climate change. I strongly believe in climate science communication – who better else is there to convey the facts, than the experts themselves?

Links:

Personal website
UNSW Climate Change Research Center
Articles on The Conversation
Scorcher

Follow me on Twitter @sarahinscience

Trevor McDougall elected a Fellow of the American Geophysical Union

The world’s leading society of Earth and space science, the American Geophysical Union, has elected UNSW Professor Trevor McDougall to its class of 2018 Fellows. Professor McDougall adds the award to an already impressive array of honours, including the Jaeger medal, awarded by the Australian Academy of Sciences, and the Prince Albert I medal, awarded by International Association for the Physical Sciences of the Oceans. Earlier this year, Trevor was appointed a Companion of the Order of Australia (AC).

Trevor’s research focuses on the mathematical and physical foundations of the mixing in the ocean. His work has advanced our understanding of the thermodynamics of seawater, resulting in dramatic improvements in the accuracy of climate models. He is a Scientia Professor and ARC Laureate Fellow at the School of Mathematics and Statistics at UNSW Sydney.

The American Geophysical Union (AGU) is the premier scientific body dedicated to the geophysical sciences, including atmospheric and ocean sciences, geology, hydrology, and space science.Each year, the AGU elects as Fellows scientists whose “visionary leadership and scientific excellence have fundamentally advanced research in their respective fields”. The honor is bestowed on only 0.1% of AGU’s 62,000 members from around the world.

Congratulations Trevor!

 

Public lecture on ozone and climate launches M4PE initiative

Renowned atmospheric scientist Professor Darryn Waugh (UNSW and Johns Hopkins University) delivered a public lecture, The enduring impact of the ozone hole on climate, to a packed audience at UNSW Sydney on Monday 30 July.

The event marked the official launch of the Mathematics for Planet Earth (M4PE) Initiative, which promotes mathematical research that benefits society and the environment. Dr Shane Keating, co-director of M4PE, opened the lecture in the Scientia’s Tyree Room, welcoming the 100 attendees and introducing Professor Waugh.

m4pe_launch

During his lecture, Prof Waugh spoke about the history of the ozone debate, and the good news story of the Montreal Protocol. The Protocol, ratified three decades ago, was the first concerted international effort to impose short-term economic cost to protect against a “speculative” global environmental problem.

m4pe_launch_2

However, he warned that vigilance was still needed due to the slow recovery of the ozone, and potential non-compliance of countries to the Montreal regulations, as recently seen in China where widespread use of CFC-11 in the construction industry has been detected.

The lecture was held on the same day that an article on the ozone hole by Dr Keating and Prof Waugh appeared in The Conversation.

Main image credit: Catherine Pogonowski