Frontiers in Fluid Dynamics workshop

Frontiers in Fluid Dynamics is an interdisciplinary workshop that aims to bring together researchers in academia, industry, and government working on all aspects of environmental and applied fluid dynamics, including forecasting, atmosphere-ocean modeling, observations and experiments.

Abstracts are invited for oral and poster presentations. Registration is free and lunch is provided. Students and early career researchers are particularly encouraged. The workshop will be followed by the AMOS-NSW public lecture and a workshop dinner in neighboring Surry Hills (self-funded).

When: 8:30am-5:30pm, 14 December 2018 (lunch provided).

Where: Bureau of Meteorology, 16/300 Elizabeth St, Sydney

Registration: https://goo.gl/forms/7iss25mObI29yaNx2 (Deadline 7 December)

Invited speakers:

Plenary lecture (9:00am): “Ensemble ocean forecasting and other next generation developments: what are the likely impacts to defence and other applications in Australia and NSW?” Dr Gary Brassington (Australian Bureau of Meteorology)

AMOS-NSW public lecture (6:00pm): “Schools weather and air quality (SWAQ): where citizen science meets urban climate research.” Dr Angela Maharaj (UNSW).

 

Sponsored by:

 

Sarah Perkins-Kirkpatrick

I’m a climate scientist interested in extreme events. In my research, I study how to better understand the anthropogenic signal behind heatwaves and their impacts. Heatwaves have become my passion – they are such complex events that have such high impacts.

My work on heatwaves has seen me recognised both nationally and internationally. I was short listed as a member of “team extreme” in the 2014 Eureka Prizes, I received a 2013 NSW Young Tall Poppy Award, I’ve worked closely with Australia’s Climate Council, and I have ongoing collaborations with international colleagues who are leaders in my field. I co-ordinated the first interdisciplinary Australian heatwave workshop in 2014, with the second following in 2015.

I developed Scorcher, where members of the general public can track heatwaves at many different sites across Australia. I also take on an active communication role on all things heatwaves, extremes and climate change. I strongly believe in climate science communication – who better else is there to convey the facts, than the experts themselves?

Links:

Personal website
UNSW Climate Change Research Center
Articles on The Conversation
Scorcher

Follow me on Twitter @sarahinscience

Matthew England

As a kid I grew up surfing and open water swimming every weekend here in Sydney and have been hooked on the oceans ever since. My first degree was in pure and applied mathematics but I quickly transitioned to oceanography during my PhD as I loved the sense of adventure and discovery that came with trying to understand how the ocean works.

Today I use computational models, observations, mathematical analyses and theory to study the dynamics of the oceans and their role in climate variability and climate change on time-scales ranging from seasons to millennia. I am interested in what makes our climate system tick, particularly the role played by the oceans and also sea-ice.

My work targets tropical climate modes, polar processes, the meridional overturning circulation and ocean heat uptake. While I dabble in paleoclimate problems (because they’re fascinating!), most of my time is spent studying present and future ocean processes and how they impact our climate system.

I supervise PhD projects in physical oceanography, atmosphere-ocean-ice interactions and climate dynamics. Specific projects can be tailored to fit the interests and skills of mathematics / physics graduates in the following topic areas: global water-mass formation, climate modes of variability, ocean ventilation, tropical and high-latitude climate dynamics, ocean drivers of climate variability and extremes, and global climate change.

Links:

Personal website
ARC Centre of Excellence in Climate Extremes
UNSW Climate Change Research Centre
Articles on The Conversation

Follow me on Twitter @ProfMattEngland

Fluid transport by vortex ring entrainment

Vortices are rotating bodies of fluid that remain coherent for long periods, and are frequently observed in the atmosphere, ocean, and in laboratory experiments. Observations and simulations of vortices indicate that they are important for transporting properties such as heat, biological material, or pollutants over large distances.

While some fluid is transported by the core of the vortex, there is also transport due to ambient fluid that is captured or “entrained” within the outer ring and then travels with the vortex as it propagates. In this project, we will examine transport by entrainment of fluid in the vortex ring, or of multiple vortex rings. Experience with Python is required.

This project is supervised by Dr Shane Keating (UNSW Sydney). Please contact s.keating@unsw.edu.au for more information.

Submit your application by Oct 26 2018 for commencement in Term 1, 2019.

AMSI Summer School 2019 at UNSW Sydney

Australia’s largest national event for students in mathematical sciences will be held at UNSW Sydney in January 2019.

The Australian Mathematical Sciences Institute (AMSI) Summer School is a four-week residential school providing students from across Australia with the opportunity to develop their mathematical skills, meet like-minded people, and network with potential future employers.

The AMSI Summer School 2019 program offers eight carefully selected subjects to ensure the latest developments in Australian maths are offered to students, some of which may not be offered at a home university. Students can choose to study one or two courses and, with permission from a home university, students can use an AMSI Summer School subject to gain credit towards their degree.

The School is primarily for honours and postgraduate students in the mathematical sciences and cognate disciplines, but other students are welcome to apply. Courses include

Visit the Summer School homepage for more details and to register.